ACM-学习记录-数论
本文最后更新于:2023年11月8日 中午
GCD,LCM
定理
a、b两个数的最大公约数乘以它们最小公倍数等于a和b的乘积
axb=GCD(a,b)xLCM(a,b)
据此定理,求3与8的最小公倍数可以为:LCM(3,8)=3x8divGCD(3,8)=24
欧几里得算法
构造关系:GCD(a,b)=GCD(b, a mod b)
1 |
|
二进制最大公约数算法
递归终止条件:GCD(m,m)=m
递归关系式:
m<n时:GCD(m,n)=GCD(n,m)
m为偶数,n为偶数:Gcd(m,n)=2*Gcd(m/2,n/2)
m为偶数,n为奇数:Gcd(m,n)=Gcd(m/2,n)
m为奇数,n为偶数:Gcd(m,n)=Gcd(m,n/2)
m为奇数,n为奇数:Gcd(m,n)=Gcd(n,m-n)
不定方程的整数解
方程ax+by=c有整数解的充要条件:gcd(a,b) | c
设d=gcd(a,b)
则若我们求得一组(x0,y0)满足ax0+by0=d
则可以得到原方程的一组解:((x0Xc)/d, (y0xc)/d)
扩展欧几里得算法
作用
已知a,b,求解一组x,y,使他们满足贝祖等式[^ax+by=gcd(a,b)=d](根据数论原理,解一定存在)。常用在求解模线性方程组中,也可以用来求解乘法逆元。
1 |
|
勾股数
勾股数有如下几个性质:
- X,Y,Z一定两两互质
- X,Y一定一奇一偶
- X+Z一定是一个完全平方数
- (Y+Z)/2也是一个完全平方数
- XxYxZ一定能被60整除
应用举例
编程求n个(n≤100)正整数Ai(Ai≤30000,1≤i≤n)的最大公约数和最小公倍数。假设解一定在长整数范围内。
先求出两个数的最大公约数(最小公倍数),再和其他数求最大公约数(最小公倍数),只需调用函数n-1次。可以利用欧几里得算法快速实现:gcd(a1,a2,…,an)=gcd(gcd(a1,a2,…,an-1),an)
阶乘问题
整数n的阶乘n!是从1到n的所有整数的乘积。编程:输入一正整数n(n≤65000),给出n!的值从右至左有多少位连续的零?并输出n!的值从右至左第一个非零位的值。
例如:n=5,则5!的值等于120,从右至左有1位连续的0;从右至左第一个非零的值为2。你的输出:
1
2
当n=11时,程序应该输出:
2
8
分析:
N!的值从右至左连续零的个数,实际上等于n!中所包含的5的因子的总数,这是因为:2x5=10.而n!中包含的2的因子的总数显然比5的因子总数大得多。
在去除了所有从右至左连续的零以后,计算n!的最右非零位数值就可以用以下的公式:
1 |
|
同余
定义
a%m=b%m,则称a,b mod m同余
概念
设a,b为两个整数,且它们的差a-b能被某个自然数m所整除,则就称a就模m来说同余于b,或者说a和b关于模m同余,
记为:a=b (mod m)
它意味着:a-b=mxk(k为整数)
性质
对于整数a,b,c和自然数m,n则对模m同余满足:
自反性:a = a(mod m)
对成性:若a=b(mod m),则b = a(mod m)
传递性:若a=b(mod m),b=c(mod m),则a=c(mod m)
同加性:若a=b(mod m),则a+c=b+c(mod m)
同乘性:若a=b(mod m),则aXc=bXc
一般情况,a=b(mod m),c=d(mod m),则:aXc=bXd(mod m)
同幂性:若a=b(mod m)则a^n=b^n(mod m)
若a mod p=x, a mod q=x,p、q互质,则a mod(pXq)=x
但是同余不满足同除性,即:a/n != b/n(mod m)
素数
素数的几个定理
唯一分解定理
若整数a>=2,那么a一定可以表示为若干个素数的乘积(唯一的形式),即a=p1xp2xp3x…ps(其中pj为素数,称为a的素因子,1<=j<=s)